
Journal of Sound and <ibration (2001) 241(3), 441}457
doi:10.1006/jsvi.2000.3304, available online at http://www.idealibrary.com on
ACOUSTIC PLANE WAVE INTERACTION WITH
A RANDOMLY INHOMOGENEOUS SLAB BOUNDED

BY ROUGH SURFACES

J.-Y. LIU AND C.-F. HUANG

Institute of;ndersea ¹echnology, National Sun>at-sen;niversity Kaoshiung, Kaoshiung 804, ¹aiwan,
Republic of China. E-mail: jimliu@mail.nsysu.edu.tw

(Received 22 March 2000, and in ,nal form 8 August 2000)

Acoustic plane wave incident upon a #uid slab bounded by rough surfaces, within which
the sound-speed distribution is subject to random perturbation, is considered. A theory
based upon a boundary perturbation method in conjunction with a formulation derived
from Green's function for the coherent "eld in the random medium has been applied to
a typical oceanic environment, to study the coherent re#ection from and transmission
through the rough-and-random slab. Under the assumption of independence between the
randomness of rough surface and that of sound-speed perturbation, the coherent "elds may
be obtained straightforwardly using formulations compatible with those employed in
the existing literature. The re#ection and transmission coe$cients are then numerically
generated for various cases to analyze the e!ects of surface roughness and medium
inhomogeneities. The results have shown that both mechanisms reduce the coherent
re#ection and transmission coe$cients, because of the generation of incoherent scattered
"elds which in e!ect are to disperse coherent energy. It is also interesting to note that the
variation of the re#ection coe$cient near the critical angle presents distinctive
characteristics for di!erent scattering mechanisms, potentially allowing to identify
the dominant one for a particular problem under consideration.
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1. INTRODUCTION

This paper considers a plane wave impinging upon a randomly inhomogeneous slab
bounded by rough surfaces, within which the distribution of the sound speed is subject to
small and random perturbations, while the density is assumed to remain constant. The
schematic diagram of the problem is shown in Figure 1. The density is taken to be constant
with reference to the fact that in oceans, which are the environment of present concern, the
density #uctuation is often much smaller than that of sound speed [1]. The scenario shown
in Figure 1 is likely to occur in an oceanic environment; for example, an acoustic wave
passing through a region where the distribution of the sound speed is disturbed by
oceanographic mixing such as eddies and internal waves [2}4], or by foreign biomass such
as deep scattering layer [5]. It is conceivable when an acoustic wave propagates through
such a region, it may be attenuated by surface and volume scattering simultaneously,
resulting in a further loss of energy in addition to that due to classical mechanisms including
geometrical spreading and volumetric absorption. The proposed model may seem too
simplistic to fully account for the situations described above; however, the fundamental
principles revealed by the present analysis should shed light on the basic mechanisms
involved in a more complex system. It is the primary purpose of this paper to understand
these basic mechanisms.
0022-460X/01/130441#17 $35.00/0 ( 2001 Academic Press



Figure 1. Environmental model: a plane wave incident upon a slab of randomly inhomogeneous medium,
within which the sound-speed distribution is subject to a small perturbation.
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The e!ects of medium inhomogeneities on plane wave re#ection similar to the present
analysis were studied by several authors recently, including a series of papers on plane wave
re#ection from a surface overlying a medium with continuously varying density and sound
speed by Robins [6}8], and several others on re#ection from randomly inhomogeneous
medium, e.g., by Tang and Frisk [9, 10]. However, in these studies, the interfaces are
assumed to be smooth so that the e!ects of surface roughness have not yet been considered.
Recently, the present authors have considered the e!ects of rough surface on the coherent
re#ection over a deterministically inhomogeneous layer with continuously varying density
and sound speed [11], and randomly inhomogeneous half-space [12]. Furthermore, the
incoherent scattered "eld was also studied [13]. The results from these analyses have shown
that the surface roughness presents signi"cant e!ects on the characteristics of the re#ection
"eld. In all of the above analyses, only single-interface (Rayleigh) scattering was considered.
The present study introduces multiple rough interfaces and considers their e!ects on plane
wave re#ection and transmission. This seemingly straightforward extension has
immediately aroused many concerns relevant to multiple scattering occurring in a
reverberation waveguide, a mechanism far more complicated than that for single-interface
scattering considered before. In this analysis, we shall derive Green's function and the
solutions for the wave "eld in the random slab, and then employ a formulation that is
appropriate to account for the scattering in a random waveguide environment.

In the following sections, we shall "rst formulate the problem, and then present numerical
implementation. Many results for the re#ection and transmission coe$cients for various
statistical parameters characterizing the roughness of the surface and randomness of the
medium are generated and analyzed.

2. FORMULATIONS

Consider a monotonic acoustic plane wave with time-dependent e*ut, propagating in x}z
plane, and encountering a #uid slab whose sound speed distribution is subject to small and
random perturbation:
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the randomness of the sound speed is homogeneous in the horizontal direction. The slab is
bounded by two one-dimensional rough surfaces with random elevation z"f

i
(x), (i"1, 2),

which are also assumed to be zero-mean, and whose magnitude and slope are small
compared to wavelength. It is to be pointed out in advance that, despite the fact that the
medium randomness is three-dimensional, the very assumption of randomness being
horizontally homogeneous makes the ensemble averages of the re#ection and transmission
"elds two-dimensional, i.e., independent of y co-ordinate; this shall greatly simplify the
future analysis.

Under the above assumptions, the Helmholtz equations and the boundary conditions
may be shown to satisfy the following equations:
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are, respectively, the acoustic pressure, vertical displacement, and

wavenumber in the ith medium, and the parameter e in equation (3), is de"ned as
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It should be noted that c@
2

embedded in e in equation (3) and f
1
, f

2
in equations (5}8) are

random parameters, and in the most general case they may be correlated. However, in this
study we shall assume that each randomness originates from di!erent physical processes,
and therefore they are taken to be statistically independent.

The approach for the solution of the problem shall be based upon the self-consistent
formulation developed by Kuperman and Schmidt [14, 15], in which the e!ects of
rough-surface scattering may be accounted for by introducing several boundary operators
whose components only involve the corresponding undisturbed and uniform problem.
However, in the present analysis, the acoustic properties in the slab are randomly
inhomogeneous. In this regard, it has been shown and discussed by Liu and Huang [12]
that, to obtain the solution of the coherent re#ection and transmission coe$cients, it is
su$cient to "rst derive the leading-order solution in the random medium, and then employ
the self-consistent formulation for rough-surface scattering; this is the syllabus to be
followed below.

2.1. GREEN'S FUNCTION AND MEAN-FIELD SOLUTION IN THE RANDOM SLAB

Here, we shall "rst derive the solution for wave propagation in the random slab.
Following the common practice of scattering analysis on wave in random media, the
solution for equation (3) may be decomposed into a coherent mean "eld Sp

2
T, and

incoherent scattered "eld ps
2
:
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where it is assumed that Dps
2
D@DSp

2
TD. Substituting equation (10) into equation (3), and then

taking the ensemble average results in the wave equation for the mean "eld:
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Furthermore, subtracting equations (11) from (3), then dropping the higher order terms,
yields the wave equation for the scattered "eld:
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It is noted that the term on the right-hand side of equation (11) is being retained so that the
system is able to maintain consistence with the fact that the energy extracted from the
coherent "eld by scattering may be appropriately accounted for.

Applying Green's formula in equation (12), and then substituting the resulting
formulation into equation (11) yields the equations for mean "eld and scattered "eld,
respectively, given by
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where R"(r, z), and G (R; R@ ) is Green's function in the random slab. It is seen that the
mean "eld is governed by an integro-di!erential equation, and the scattered "eld, which is
excited by the mean "eld, may be derived from equation once the mean "eld is obtained. In
the present study, we are primarily concerned with the coherent "eld so that the solution of
equation (13) is in order.

Equation (13) shows that, in order to obtain the solution for the mean "eld, it is necessary
to derive Green's function in the slab, which in the present case requires one to solve the
following system of equations:
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Without loss of generality, the solution in each layer may be expressed by generalized
Fourier integral:
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third layers, the average wavenumber is just the wavenumber itself ).
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On the other hand, the solution of the mean "eld also depends upon the spatial
correlation of the sound-speed randomness, as shown in equation (13). In this regard, the
medium is assumed to be anisotropic, with high correlation in the horizontal direction and
low correlation in the vertical direction, so that the correlation function may be expressed as
[17, 18]:
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Substituting equation (30) into equation (13), the equation governing the mean "eld
becomes
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Furthermore, inserting equation (32) into equation (33), and considering the fact that the
incoming plane wave lies on x}z plane and the roughness is one dimensional so that there is
no out-of-plane component for the mean "eld, the solution for Sp
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may be expressed as
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The above equation was derived under the assumptions that q(z@) and G
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embedded in equation (33) are slowly varying functions over z@ so that it was set to be equal
to z, and then subsequently taken out of integral with respect to z@.

To further simplify the formulation, with z@"z, equation (23) is rewritten as
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Further substitution of equation (31) and (36) into equation (35), and via some algebraic
manipulations, a non-homogeneous second order ordinary di!erential equation results:

d2q

dz2
#g2q"!F(z)q, (40)

where

F(z)"2Sk
2
T4p2z

0 P
=

0

i

k
z,2

H(k
r
, k

r,0
)(B

1
e2*kz,2z#C

1
e~2*kz,2z)k

r
dk

r
(41)



ACOUSTIC PLANE WAVE INTERACTION 447
with relevant parameters and functions de"ned as follows:
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Due to the fact that DF(z)D;Dg2D, equation (40) may be solved by "rst dropping the right-hand side
to obtain the "rst-iteration solution, and then solving the full equation by the method of variation of
parameter to yield [19]
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This is the desired solution for the wave "eld inside the slab. Finally, since the upper and
lower media are homogeneous, their solutions may be expressed as
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2.2. REFLECTION AND TRANSMISSION COEFFICIENTS

Having obtained the solutions for wave propagation in all three layers, it is now
appropriate to consider wave interaction with the rough surfaces. Here, as mentioned
previously, we shall employ the method of boundary perturbation developed by Kuperman
and Schmidt [15], in which the e!ects of rough surface scattering on the coherent "eld may
be accounted for by modifying the boundary conditions corresponding to the case of
smooth interface. Since the details of the derivation may be found in reference [15], only the
"nal formulation is presented here.

To apply the Kuperman}Schmidt theory, it is necessary to "rst establish the linear
system for the unknown amplitudes of wave components in various layers for the case of
smooth interfaces. With respect to this, it may be shown that, by invoking the boundary
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conditions stipulated by the physical requirements of continuities of pressure and vertical
displacement, the same as those shown in equations (18)}(21), the linear system may be
conveniently expressed as
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For the case of rough boundaries, equation (51) must be modi"ed to account for the
random elevation and rotation of the roughness. Through lengthy and cumbersome
derivations, the modi"ed boundary condition is [15]
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The matrix B
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) representing the e!ect of surface orientation of the rough surface may be

derived as follows:
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Other operators relevant to the derivatives of the matrix B(k
r,0

) appearing in equations
(57) and (58) are derived and presented in Appendix A. The power spectrum for the rough
surface embedded in equation (58) is also taken to be Gaussian for convenience:

P (k)"J2nle~k2l2@2. (60)

Here, l represents the correlation length of the roughness. The linear system, equation (51),
may be solved for SRT and STT to obtain the coherent re#ection coe$cient and
transmission coe$cient.

3. EXAMPLES AND DISCUSSION

In this section, we shall apply the above formulation to several examples to demonstrate
and discuss the results of coherent re#ection and transmission coe$cients under the e!ects
of various controlling parameters of the problem. In particular, attention is given to the
parameters characterizing the present analysis, which are the randomness inside the slab
represented by p, and the roughness over the interfaces represented by r.m.s. roughness
Sf2T1@2. Although the spatial correlation of both the medium randomness and surface
roughness may also a!ect the characteristics of the sound "elds (re#ection and
transmission), it has been demonstrated by Liu and Huang [11] that, as far as the coherent
"elds are concerned, the spatial correlation, which is important for the scattered "eld, may
only produce a minor e!ect, so that it is not to be discussed here. The properties of the
scattering "eld is intended to be analyzed in a future paper in relation to the issues of surface
and/or volume reverberation in a waveguide propagation.

Here, we consider a plane wave propagating in an oceanic environment, and
encountering a randomly inhomogeneous region. Typical values of parameters are chosen
as follows:
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2
T"1800 m/s, z

0
"1 m,

o
2
"1300 kg/m3, ¸

0
"5 m,

d"20 m, p"0)15.

The values of frequency and the acoustic properties of the slab or the lower medium may
vary according to the purpose of analysis, and will be stated in the caption when it becomes
necessary. It is to be stressed here that the numerics chosen for the parameters/variables
should be within the limitations of the theories for surface and volume scattering, and are
primarily intended to reveal the fundamental mechanisms of the wave interaction, so that
they may not be able to cope with those employed in a realistic application.

Figure 2 shows the coherent re#ection coe$cient for a frequency of 200 Hz due to a slab
of average sound speed 1800 m/s and density 1300 kg/m3 in an oceanic environment. In this
case, the ratio of thickness-to-wavelength is about 2)7, an appropriate value to illustrate the
characteristics of interaction. The dotted curve is for a smooth-and-uniform slab, which
serves as a benchmark solution of the problem. The result indicates that total re#ection
occurs when the incoming plane wave impinges on the upper interface with a grazing angle
lower than the critical angle, which is about cos~1 (1500/1800)"33)63. For grazing angles
higher than the critical angle, the re#ection coe$cient demonstrates an oscillatory behavior,
which is due to multiple re#ection from the interfaces bounding the slab. The local maxima
and minima are resulted when the multiply re#ected waves are, respectively, closer and
further in phase to each other.

The dashed, dashed-and-dotted, and solid curves in Figure 2 illustrate the coherent
re#ection, respectively for the case of surface roughness alone, medium randomness alone,
and the two combined. It is seen that both the surface roughness and medium randomness
cause a reduction of the re#ection coe$cient. This is readily understood in view of the fact
that both perturbations will generate incoherent scattered "elds, in e!ect, to strip coherent
energy from the incoming wave. It also shows that total re#ection no longer exists, in that
energy may escape from the coherent "eld by either rough-surface scattering or volume
scattering. A closer examination may also reveal that the behavior of the curves departing
from the benchmark solution (dotted curve) near the critical angle shows a distinctive
Figure 2. Re#ection coe$cients: f"200 Hz; d"20 m; (**), p"0)15, Sf2T1@2"0)4 m; (} }), p"0,
Sf2T1@2"0)4 m; () } ) }), p"0)15, Sf2T1@2"0; () ) ) ) ) )), p"0, Sf2T1@2"0.
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characteristic for di!erent scattering mechanisms. The dashed-and-dotted curve
corresponding to volume scattering demonstrates a &&milder'' variation than that
corresponding to rough-surface scattering which is &&sharper'' in nature; the former type of
variation is similar to that due to medium absorption. As a result, the e!ect of sound-speed
perturbation inside the volume is equivalent to that due to volumetric absorption which has
been discussed in some previous literature [20]. Even though either of the scattering
mechanisms may become the dominant factor, depending upon the order-of-magnitude of
the randomness, the distinct feature near the critical angle is potentially capable of allowing
us to identify the dominant mechanism.

Next, the coherent transmission coe$cient is considered, which is shown in Figure 3. The
result shows that for incident grazing angles higher than the critical angle, the transmission
coe$cient is signi"cantly reduced by either surface roughness or sound-speed perturbation.
It is clear that the transmission coe$cient vanishes when the incident grazing angle is lower
than the critical angle, in that no energy is being transmitted in this case. It is also noted that
the curve representing transmission through a random slab with smooth interface (dashed
and dotted) varies much less prominently than that for smooth-and-uniform slab (dotted).
In reminiscence of the transmission coe$cient corresponding to the Rayleigh problem, it is
conceivable that the transmission "eld in the present analysis is dominated by the "rst
transmitted wave; all other multiply transmitted waves have been signi"cantly damped
inside the random slab.

The e!ect of frequency, equivalently, the thickness-to-wavelength ratio, on the re#ection
and transmission coe$cients is considered in Figures 4 and 5. It is noted that these "gures
present two sets of curves, corresponding, respectively, to 75 and 150 Hz; each comparing
with its corresponding benchmark solution. It is seen that, for a frequency of 150 Hz
(k

1
d"12)6), the di!erence between the result for smooth-and-uniform slab (dashed and

dotted) and that for rough-and-random slab (solid) is much larger than that for the curves
corresponding to 75 Hz (k

1
d"6)3) (dotted for rough-and-random slab, and dashed for

rough-and-random slab). This indicates that, as the frequency decreases, the e!ect due to
surface roughness and sound-speed perturbation diminishes. This is expected in that, for
lower frequency (equivalently, longer wavelength), the interface and the sound-speed
distribution inside the slab appear to be smoother and less random, so that the behavior of
the re#ection and transmission is closer to that for smooth-and-uniform slab.
Figure 3. Transmission coe$cients: f"200 Hz; d"20 m; (**), p"0)15, Sf2T1@2"0)4 m; (} } )), p"0,
Sf2T1@2"0)4 m; () } ) }), p"0)15, Sf2T1@2"0; () ) ) ) ) )), p"0, Sf2T1@2"0.



Figure 4. Re#ection coe$cients for two di!erent frequencies: f"75 Hz; d"20 m; (} }, p"0)15,
Sf2T1@2"0)4 m; ) ) ) ) ) ), p"0, Sf2T1@2"0), f"150 Hz; d"20 m; (**, p"0)15, Sf2T1@2"0)4 m; ) } ) }, p"0,
Sf2T1@2"0).

Figure 5. Transmission coe$cients for two di!erent frequencies. f"75 Hz; d"20 m; (} }, p"0)15,
Sf2T1@2"0)4 m; ) ) ) ) ) ), p"0, Sf2T1@2"0), f"150 Hz; d"20 m; (**, p"0)15, Sf2T1@2"0)4 m; ) } )} ) }, p"0,
Sf2T1@2"0).
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Figures 6 and 7 are the results for a slab having smaller sound speed and density than its
ambient; the average sound speed and the density are taken, respectively, to be 1400 m/s,
and 900 kg/m3. In this case, since the sound speed in the slab is smaller than that of its
ambient, total re#ection ceases to exist. Moreover, the results for this case show a slightly
di!erent characteristic from those shown previously. In particular, the re#ection coe$cient
under the in#uence of medium inhomogeneities alone does not present a universal
reduction over all grazing angles in comparison with the benchmark solution; this is true
particularly for lower grazing angles where the re#ection coe$cient appears to be larger in
some places. The reason for this is the phase interference between multiply re#ected waves
so that, even though the amplitudes are attenuated, the resulting superposition of various
re#ected waves may yield higher values in some local intervals. The other properties of these
"gures are similar to those discussed previously.

Finally, we examine the case where the sound speed and density in the bottom layer are
changed to 2000 m/s and 1500 kg/m3 respectively. In this case, the re#ection coe$cient



Figure 6. Re#ection coe$cients for sound speed 1400 m/s and density 900 kg/m3 in the slab: f"200 Hz,
d"20 m; (**), p"0)15, Sf2T1@2"0)4 m; (} }), p"0, Sf2T1@2"0)4 m; () } ) )), p"0)15, Sf2T1@2"0; () ) ) ) ) )),
p"0, Sf2T1@2"0.

Figure 7. Transmission coe$cients for sound speed 1400 m/s and density 900 kg/m3 in the slab: f"200 Hz,
d"20 m; (**), p"0)15, Sf2T1@2"0)4 m; (} }), p"0, Sf2T1@2"0)4 m; () } ) )), p"0)15, Sf2T1@2"0; () ) ) ) ) )),
p"0, Sf2T1@2"0.
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demonstrates a similar behavior to previous results, but the transmission coe$cient shows
two distinct peaks for smooth-and-uniform (dotted) and rough-and-uniform (dashed) slabs.
It is noted that, for the benchmark problem, total re#ection occurs for an incident grazing
angle less than cos~1 (1500/2000)"41)43 due to the medium contrast between the upper
and lower half-spaces; however, the incident wave still penetrates into the slab until 33)63.
Therefore, between these two angles, it is likely that wave interference may result in local
minima/maxima, as shown in Figure 8. The transmission coe$cient shown in Figure 9
illustrates that scattering inside the slab due to sound-speed perturbation is the dominant
factor accounting for the damping of transmission "eld.

4. CONCLUSIONS AND REMARKS

The purpose of this paper is to demonstrate the interaction between an acoustic plane
wave with a random slab bounded by rough interfaces in an oceanic environment. By



Figure 8. Re#ection coe$cients for sound speed 2000 m/s and density 1500 kg/m3 in the lower medium:
f"200 Hz, d"20 m; (**), p"0)15, Sf2T1@2"0)4 m; (} }), p"0, Sf2T1@2"0)4 m; () } ) )), p"0)15, Sf2T1@2"0;
() ) ) ) ) )), p"0, Sf2T1@2"0.

Figure 9. Transmission coe$cients for sound speed 2000 m/s and density 1500 kg/m3 in the lower medium:
f"200 Hz, d"20 m; (**), p"0)15, Sf2T1@2"0)4 m; (} }), p"0, Sf2T1@2"0)4 m; () } ) )), p"0)15, Sf2T1@2"0;
() ) ) ) ) )), p"0, Sf2T1@2"0.
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combining a perturbation theory for rough-surface scattering and a Green's formulation for
volume scattering due to random sound-speed perturbations, a system of governing
equations appropriate for the present analysis is formulated.

Results for the coherent re#ection and transmission coe$cients were generated
and analyzed. It was found that both the coe$cients are reduced due to rough surface
and volume scattering. However, the characteristics of variation near the critical angle
are distinctive with respect to di!erent mechanisms. Furthermore, the e!ects of
thickness-to-wavelength ratio and that of impedance contrast of the media on the re#ection
and transmission coe$cients were studied, and found to be in consistence with compatible
results in existing literature.

A few words regarding the theory for scattering from rough surfaces are in order.
The theory employed is based upon the boundary perturbation method developed by



ACOUSTIC PLANE WAVE INTERACTION 455
Kuperman and Schmidt [15], and was proven to be e$cient and satisfactory for scattering
from single rough surfaces. However, the multiple scattering which resulted from successive
interactions with rough boundaries such as wave propagation in a waveguide bounded by
rough surfaces is unable to be appropriately accounted for, therefore, the numerical solution
so derived may lead to an overestimation, depending upon the order of magnitude of the
roughness. Nonetheless, it has been shown that if the size of roughness is small compared
with the wavelength, the error incurred is insigni"cant. This is further warranted in the
present case in that the medium randomness plays a similar role to that of volumetric
absorption, which may e!ectively reduce the error due to the fact that the signi"cance of the
multiply re#ected waves may be further suppressed, and eventually diminished as the
thickness of the slab becomes much larger than the acoustic wavelength.
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APPENDIX A

In this appendix, we present the operators (LB/Lz)(k
r,0

) and (L2B/Lz2) (k
r,0

), which appear
in equations (57) and (58). Since the derivation is lengthy it is not presented here. The results
of derivation are given as follows:
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